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a b s t r a c t 

Fractal dimension constitutes the main tool to test for fractal patterns in Euclidean contexts. 

For this purpose, it is always used the box dimension, since it is easy to calculate, though 

the Hausdorff dimension, which is the oldest and also the most accurate fractal dimension, 

presents the best analytical properties. Additionally, fractal structures provide an appropri- 

ate topological context where new models of fractal dimension for a fractal structure could 

be developed in order to generalize the classical models of fractal dimension. In this survey, 

we gather different definitions and counterexamples regarding these new models of fractal 

dimension in order to show the reader how they behave mathematically with respect to the 

classical models, and also to point out which features of such models can be exploited to pow- 

erful effect in applications. 

© 2015 Elsevier Ltd. All rights reserved. 
1. Introduction 

The analysis of fractal patterns has grown during the last 

years, mainly due to the wide range of applications to diverse 

scientific areas where fractals have been explored, including 

physics, statistics, and economics (see, e.g., [10,12] ). It is also 

worth mentioning that there has also been a special interest 

for applying fractals to social sciences (see for example [8] 

and references therein). 

It turns out that the key tool to study the complexity 

of a given system is the fractal dimension, since this is its 

main invariant which throws quite useful information about 
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the complexity that it presents when being examined with 

enough level of detail. 

We would like also to point out that fractal dimension is 

usually understood as the classical box dimension, mainly in 

the field of empirical applications. In fact, its popularity is 

due to the possibility of its effective calculation and empiri- 

cal estimation. On the other hand, the Hausdorff dimension 

also constitutes a powerful analytical model which allows to 

“measure” the complexity of a system, at least from a theo- 

retical point of view. Nevertheless, though they are defined 

for any metric (resp. metrizable) space, almost all the empir- 

ical applications of fractal dimension are tackled in the con- 

text of Euclidean spaces. In addition to that, recall that box 

dimension is more useful for practical applications, whereas 

Hausdorff dimension presents “better” analytical properties, 

due to the fact that its standard definition is based on a mea- 

sure. Indeed, though Hausdorff dimension becomes the most 

accurate model for fractal dimension, since its definition is 
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quite general, it can result difficult or even impossible to cal-

culate in practical applications. 

It is worth mentioning that the application of fractal

structures allows to provide new models for a fractal di-

mension definition on any generalized-fractal space, and not

only on the Euclidean ones. This extends the classical theory

of fractal dimension to the more general context of fractal

structures. In this way, some theoretical results have been

shown to generalize the classical models in the context of

fractal structures (see, e.g., [ 13 , Theorem 4.15] and [ 15 , The-

orem 3.12]). Moreover, we would like to point out that some

fractal dimensions for a fractal structure have already been

successfully applied in non-Euclidean contexts, where the

box dimension cannot be applied (see, e.g., [18,19] ). 

Accordingly, when providing a new model to calculate

the fractal dimension, it would be desirable that the con-

tributed definitions allow to calculate the fractal dimension

for a given subset as easy as the box dimension models,

though one should be also mirrored in the analytical prop-

erties satisfied by the Hausdorff dimension. 

In this survey, we review different definitions of fractal

dimension for a fractal structure and gather some counterex-

amples provided in [13–15,17] regarding these new models of

fractal dimension (described in Section 2.3 ) in order to show

the reader how they behave mathematically with respect to

the classical models, and also to point out which features of

such models can be exploited to powerful effect in further

applications. 

The organization of this paper is as follows. In Section 2 ,

we provide some basic definitions, notations, and results that

are useful along this paper. In Section 3 , we gather a collec-

tion of counterexamples regarding some theoretical proper-

ties that are often explored for new definitions of fractal di-

mension. Moreover, in Section 4 , we describe some features

about a fractal dimension model for a fractal structure which

does not depend on any metric. In addition to that, we devote

Section 5 to justify some natural assumptions that must be

satisfied in some Hausdorff dimension type definitions for a

fractal structure. It is also worth mentioning that some coun-

terexamples regarding the fractal dimension of IFS-attractors

are contained in Section 6 . Finally, in Section 7 , we gather

some counterexamples showing that the fractal dimension

definitions for a fractal structure that we analyze along this

paper, do not coincide, in general. 

2. Preliminaries 

In this section, we provide all the necessary mathemati-

cal background for this paper, including definitions, notions,

and theoretical results. Along this paper, let I = { 1 , . . . , k } be

a finite set of indices. 

2.1. Classical models for fractal dimension 

Next, we recall the definition of the standard box dimen-

sion. As [ 10 , Section 3.6] points out, its origins become quite

hard to trace, though it seems that it would have been consid-

ered previously by the Hausdorff dimension pioneers, who

rejected it at a first glance due to its lack of theoretical prop-

erties. Anyway, the standard definition of box dimension that

we recall next, was firstly provided in [22] . 
Definition 2.1. The (lower/upper) box dimension for any

subset F ⊆ R 

d is given by the following (lower/upper) limit: 

dim B (F ) = lim 

δ→ 0 

log N δ(F )

− log δ
, 

where N δ( F ) is the number of δ-cubes that intersect F . 

Recall that a δ- cube in R 

d is a set of the form

[ k 1 δ, (k 1 + 1 ) δ] × · · · × [ k d δ, (k d + 1 ) δ] , with k 1 , . . . , k d ∈
Z . It is also worth mentioning that the formula contained

in Definition 2.1 could be properly discretized through δ =
1 / 2 n : n ∈ N , which becomes especially appropriate for com-

putational purposes [18] . Some alternatives to calculate the

box dimension could be found out in [ 10 , Equivalent defini-

tions 3.1], where equivalent expressions to calculate N δ( F ) are

provided. Moreover, notice that in both [ 14 , Theorem 3.5] and

[ 11 , Equivalent definitions 2.1], the equivalence among all of

these alternative approaches to calculate the box dimension

are shown. 

On the other hand, in 1919, Hausdorff applied a method-

ology developed by Carathéodory some years earlier (see [9] )

in order to define the measures that now bear his name, and

showed that the middle third Cantor set has positive and fi-

nite measure whose dimension is equal to log 2/log 3 [20] .

In addition to that, a detailed study regarding the analytical

properties of both the Hausdorff measure and dimension was

mainly developed by Besicovitch and his pupils afterwards

(see, e.g., [6,7] ). 

Along this paper, we will define the diameter of a given

subset A of any metric space ( X, ρ), as usual, by diam (A) =
sup { ρ(x, y) : x, y ∈ A)} . Next, let us recall the standard con-

struction regarding the Hausdorff dimension. Let δ > 0. Thus,

for any subset F of X , we recall that a δ- cover of F is just

a countable family of subsets { U j } j ∈ J , such that F ⊆ ⋃ 

j∈ J U j ,

where diam ( U j ) ≤ δ, for all j ∈ J . Moreover, let C δ(F ) be the

collection of all δ-covers of F , and let us consider the follow-

ing quantity: 

H 

s 
δ(F ) = inf 

{∑ 

j∈ J 
diam (U j )

s : { U j } j∈ J ∈ C δ(F )

}
. 

Interestingly, the next limit always exists: 

H 

s 
H (F ) = lim 

δ→ 0 
H 

s 
δ(F ), 

which is named as the s - dimensional Hausdorff measure of F .

Thus, the Hausdorff dimension of F is fully determined as the

unique point s , where the s -dimensional Hausdorff measure

“jumps” from ∞ to 0, namely, 

dim H (F ) = inf { s : H 

s 
H (F ) = 0 } = sup { s : H 

s 
H (F ) = ∞} . (1)

2.2. Fractal structures and the natural fractal structure on any 

Euclidean subspace 

The concept of fractal structure, which naturally appears

in several topics regarding Asymmetric Topology [23] , was

first introduced in [1] to characterize non-Archimedeanly

quasi-metrizable spaces. Afterwards, in [4] , it was applied

to deal with IFS-attractors. It is worth mentioning that frac-

tal structures do constitute a powerful tool to develop new

fractal dimension models that allow to calculate the fractal
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dimension over a wide range of (non-Euclidean) spaces and 

contexts (see, e.g., [18] ). 

Recall that a family � of subsets of a given space X is said 

to be a covering , if X = 

⋃ { A : A ∈ �} . 
Next, we provide the definition of a fractal structure on a 

set X . In fact, let �1 and �2 be any two coverings of X . Recall 

that �1 ≺�2 means that �1 is a refinement of �2 , namely, for 

all A ∈ �1 , there exists B ∈ �2 , such that A ⊆ B . In addition 

to that, �1 ≺≺�2 denotes that �1 ≺�2 , and also that, for all 

B ∈ �2 , B = 

⋃ { A ∈ �1 : A ⊆ B } . Hence, a fractal structure on

a set X is a countable family of coverings of X , � = { �n } n ∈ N , 
such that �n +1 ≺≺ �n , for all n ∈ N . In this way, covering �n 

is called level n of the fractal structure �. 

A fractal structure induces a transitive base of quasi- 

uniformity (and hence a topology) given by the transitive 

family of entourages U �n 
= { (x, y) ∈ X × X : y ∈ X \ ⋃ { A ∈

�n : x / ∈ A }} , where n ∈ N . 

To simplify the theory, the levels in a fractal structure will 

not be coverings in the usual sense. Instead of this, we al- 

low that a set can appear twice or more in any level of a 

fractal structure. Also, we would like to point out that a frac- 

tal structure � is said to be finite provided that all its levels 

�n are finite coverings. Further, a fractal structure � is said 

to be locally finite , if for each level n in that fractal struc- 

ture, it holds that any point x ∈ X belongs to a finite num- 

ber of elements A ∈ �n . In general, if �n satisfies a certain 

property P , for all n ∈ N , and � = { �n } n ∈ N is a fractal struc-

ture on X , then we will say that � is a fractal structure with 

the property P , and also that ( X , �) is a GF-space with that 

property. In addition, if � is a fractal structure on X , and 

St (x, �) = { St (x, �n ) : n ∈ N } is a neighborhood base of x for 

each x ∈ X , where St (x, �n ) = 

⋃ { A ∈ �n : x ∈ A } , then � is

said to be a starbase fractal structure . It is worth mentioning 

that starbase fractal structures are connected with metriz- 

ability (see [2,3] ). 

On the other hand, it turns out that any Euclidean space 

R 

d can always be equipped with a natural fractal structure, 

which satisfies some interesting topological properties. In 

fact, such a natural fractal structure, which was first de- 

scribed in [ 14 , Definition 3.1], is locally finite, starbase and 

induces the usual topology. 

Definition 2.2. The natural fractal structure on a Euclidean 

space R 

d is given by the countable family of coverings � = 

{ �n } n ∈ N , whose levels are 

�n = 

{[
k 1 
2 

n 
, 

k 1 + 1 

2 

n 

]
× . . . 

×
[

k d 
2 

n 
, 

k d + 1 

2 

n 

]
: k 1 , . . . , k d ∈ Z 

}
. 

In particular, a natural fractal structure induced on real 

subsets could also be considered from Definition 2.2 . For in- 

stance, the natural fractal structure (on the real line) induced 

on the closed unit interval [0, 1], could be defined as the 

countable family of coverings � = { �n } n ∈ N , whose levels are 

given by �n = { [ k 
n , 

k +1 
n ] : k ∈ { 0 , 1 , . . . , 2 n − 1 }} . 
2 2 
2.3. Theoretical models for fractal dimension based on fractal 

structures 

Next, we recall our two first models of fractal dimension 

for a fractal structure (introduced in [14] ), namely, both frac- 

tal dimensions I and II. Thus, as it happens with classical box 

dimension, these models of fractal dimension do not have al- 

ways to exist. This is the reason for which we have to define 

them through lower/upper limits, too. 

Definition 2.3 (Box dimension type models for a fractal 

structure) . Let � be a fractal structure on a distance space ( X, 

ρ), F be a subset of X , and N n ( F ) be the number of elements in

level n that intersect F . Thus, 

(1) the (lower/upper) fractal dimension I for F is given by 

the (lower/upper) limit: 

dim 

1 
�(F ) = lim 

n →∞ 

log N n (F )

n log 2 

. 

(2) The (lower/upper) fractal dimension II for F is defined 

as the (lower/upper) limit: 

dim 

2 
�(F ) = lim 

n →∞ 

log N n (F )

− log δ(F , �n )
, 

where δ(F , �n ) = sup { diam (A) : A ∈ A n (F )} is the di-

ameter of F in each level of the fractal structure, and 

A n (F ) = { A ∈ �n : A ∩ F 
 = ∅} . 
It turns out that both fractal dimensions I and II do gen- 

eralize the box dimension in the context of Euclidean spaces 

equipped with their natural fractal structures (see [ 14 , Theo- 

rem 4.7]). 

It is worth mentioning that the fractal dimension defini- 

tion for a fractal structure we provide next (given in [ 13 , Def-

inition 4.2]), could be understood as a hybrid model, since its 

definition is made, someway, as a discrete version regarding 

the Hausdorff dimension, though it also generalizes the clas- 

sical box dimension, too. 

Definition 2.4. Let � be a fractal structure on a metric space 

( X, ρ), F be a subset of X , and assume that δ( F, �n ) → 0. Given

n ∈ N , let us also consider the next expression: 

H 

s 
n, 3 (F ) = inf 

{∑ 

j∈ J 
diam (A j )

s : { A j } j∈ J ∈ A n, 3 (F )

}
, 

where A n, 3 (F ) = {{ A ∈ �l : A ∩ F 
 = ∅} : l ≥ n } . Define also 

H 

s 
3 (F ) = lim 

n →∞ 

H 

s 
n, 3 (F ). 

Thus, the fractal dimension III for F is defined as the following 

non-negative real number: 

dim 

3 
�(F ) = inf { s : H 

s 
3 (F ) = 0 } = sup { s : H 

s 
3 (F ) = ∞} . 

Unlike it happens with fractal dimensions I and II (recall 

Definition 2.3 ), fractal dimension III always exist (see [13, Re- 

mark 4.4] ). This is mainly due to the fact that H 

s 
n, 3 

is a mono-

tonic sequence in each natural number n . Moreover, [13, The- 

orem 4.15] shows that fractal dimension III generalizes box 

dimension (as well as fractal dimensions I and II) in the con- 

text of Euclidean spaces equipped with their natural fractal 
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structures. Interestingly, it also turns out that fractal dimen-

sion III can be estimated as easy as the standard box dimen-

sion in empirical applications. For additional details, we re-

fer the reader to [13] , and especially to Theorem 4.7, therein,

since it provides a handier expression to calculate the fractal

dimension III through the families A n (F ). 

The last step in this section is to describe three more

models (introduced in [15] ) for a fractal dimension defi-

nition (with respect to any fractal structure) following the

spirit of the Hausdorff dimension. Thus, while the first one

is especially interesting, since its description is made in

terms of finite coverings (which allowed the authors in [16]

to contribute the first-known overall algorithm to calculate

the Hausdorff dimension), the remaining definitions become

close approaches to the classical Hausdorff dimension. In

fact, while upcoming fractal dimension V is a discrete ver-

sion regarding the Hausdorff model, the fractal dimension VI

provides a continuous approach for that in terms of δ-covers.

Definition 2.5 (Hausdorff dimension type models for a frac-

tal structure) . Let � be a fractal structure on a metric space

( X, ρ), F be a subset of X , and assume that δ( F, �n ) → 0. Thus,

let us consider the following expressions: 

(1) given n ∈ N : 

H 

s 
n,k (F ) = inf 

{∑ 

j∈ J 
diam (A j )

s : { A j } j∈ J ∈ A n,k (F )

}
, 

where A n,k (F ) is given, in each case, by: 

(i) {{ A j } j∈ J : A j ∈ 

⋃ 

l≥n �l , ∀ j ∈ J, F ⊆⋃ 

j∈ J A j , Card ( J) < ∞} , if k = 4 ; 

(ii) {{ A j } j∈ J : A j ∈ 

⋃ 

l≥n �l , ∀ j ∈ J, F ⊆ ⋃ 

j∈ J A j } , if

k = 5 . 

Define also: 

H 

s 
k (F ) = lim 

n →∞ 

H 

s 
n,k (F ), 

for k = 4 , 5 . Thus, the fractal dimension IV (resp. V) for

F is defined as the non-negative real value satisfying

the following identity: 

dim 

k 
�(F ) = inf { s : H 

s 
k (F ) = 0 } = sup { s : H 

s 
k (F ) = ∞}

(2) Given δ > 0: 

H 

s 
δ, 6 (F ) = inf 

{∑ 

j∈ J 
diam (A j )

s : { A j } j∈ J ∈ A δ, 6 (F )

}
, 

where A δ, 6 (F ) is defined as 

A δ, 6 (F ) = 

{
{ A j } j∈ J : A j ∈ 

⋃ 

l∈ N 
�l , ∀ j ∈ J, diam (A j )

≤ δ, F ⊆
⋃ 

j∈ J 
A j 

}
. 

Let us consider also 

H 

s 
6 (F ) = lim 

δ→ 0 
H 

s 
δ, 6 (F ). 

Hence, the fractal dimension VI for F is given by 

dim 

6 
�(F ) = inf { s : H 

s 
6 (F ) = 0 } 

= sup { s : H 

s (F ) = ∞} . 
6  
In Definition 2.5 , we consider that inf ∅ = ∞ . Thus,

whether A n, 4 (F ) = ∅ (resp. A n, 5 (F ) = ∅ or A δ, 6 (F ) = ∅ ) for

some F ⊂ X , then dim 

4 
�(F ) = ∞ (resp. dim 

5 
�(F ) = ∞ or

dim 

6 
�(F ) = ∞ ). It is worth mentioning that Table 1 in

Section 3 provides a schematic comparison regarding the

analytical properties that are satisfied by all the fractal di-

mensions studied along this paper. Surprisingly, it turns out

that fractal dimension IV would not seem to be interesting

enough in the light of the properties it satisfies, since they

are the same as box dimension does. However, though its

definition is made in terms of finite coverings, it holds that

both fractal dimension IV and Hausdorff dimension coin-

cide for compact Euclidean subspaces (see [15, Theorem 3.13

and Corollary 3.14 (2)] ). This theoretical fact allowed the au-

thors therein to provide the first-known procedure to calcu-

late the Hausdorff dimension in practical applications (see

[16, Algorithm 3.1] ). On the other hand, fractal dimension IV

also becomes an intermediate model between the box and

the Hausdorff dimensions (for additional details, we refer the

reader to [15, Remark 3.15] ). On the other hand, fractal di-

mensions V and VI do also generalize the Hausdorff model in

the context of Euclidean subspaces equipped with their nat-

ural fractal structures (see [15, Corollary 3.11] ). 

2.4. IFS-attractors. The natural fractal structure on 

IFS-attractors. The open set condition 

First, let f : X −→ X be a self-map defined on a metric

space ( X, ρ). Recall that f is said to be a Lipschitz self-map,

whenever it satisfies that ρ( f ( x ), f ( y )) ≤ c ρ( x, y ), for all x, y

∈ X , where c > 0 is the Lipschitz constant associated with

f . In particular, if c < 1, then f is said to be a contraction ,

and we will refer to c as its contraction factor . Further, if

the equality in the previous expression is reached, namely,

ρ( f (x), f (y)) = c ρ(x, y), for all x, y ∈ X , then f is called a sim-

ilarity , and its Lipschitz constant is its similarity factor , too. 

Definition 2.6. For a metric space ( X, ρ), let us define an IFS

as a finite family F = { f i } i ∈ I , where f i is a contraction, for all

i ∈ I . Thus, the unique compact set A ⊂ X , which satisfies that

A = 

⋃ 

f∈F f (A), is called the attractor of the IFS F , or IFS-

attractor, as well. Further, it is also called a self-similar set.

If, in addition to that, all the f i mappings are similarities, then

we will say that A is a strict self-similar set. 

It is a standard fact from Fractal Theory that there exists

an attractor for any IFS on a complete metric space. 

IFS-attractors can be always equipped with a natural frac-

tal structure, which was first sketched in [5] , and formally

defined later in [4, Definition 4.4] . Next, we recall the de-

scription of such a fractal structure, which becomes essential

onwards. 

Definition 2.7. Let F be an IFS, whose associated IFS-

attractor is K . The natural fractal structure on K is defined

as the countable family of coverings � = { �n } n ∈ N , where

�n = { f ω (K) : ω ∈ I n } , for each n ∈ N . It is worth mention-

ing that, for a given natural number n , and each word ω =
ω 1 ω 2 . . . ω n ∈ I n , we denote f ω = f ω 1 ◦ . . . ◦ f ω n . 

Remark 2.8. Another appropriate description for the lev-

els in such a natural fractal structure can be carried out as
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Table 1 

Those analytical properties that are satisfied by all the fractal dimension models considered along this paper. 

Note that F-stability refers to the finite stability property for a fractal dimension dim , C-stability refers to 

the countable stability, 0-countably means that a fractal dimension dim is zero for countable subsets, and 

finally, cl -dim refers to the following property: dim (F ) = dim (F ). 

Theoretical properties 

Monotonicity F-stability C-stability 0-countably cl - dim 

Fractal dimensions dim B � � � 

dim 

1 
� � � 

dim 

2 
� � 

dim 

3 
� � � 

dim 

4 
� � � � 

dim 

5 
� � � � � 

dim 

6 
� � � � � 

dim H � � � � 

 

 

 

follows: �1 = { f i (K) : i ∈ I} , and �n +1 = { f i (A) : A ∈ �n , i ∈
I} , for all n ∈ N . 

On the other hand, the open set condition (OSC in short) 

becomes a relevant hypothesis required to the similarities f i 
of an Euclidean IFS F , in order to guarantee that the pieces 

f i ( K ) of the corresponding IFS-attractor K do not overlap too 

much . Technically, such a condition is satisfied if and only if 

there exists a non-empty bounded open subset V ⊂ R 

d , such 

that 
⋃ 

i ∈ I f i (V ) ⊂ V, where that union remains disjoint (see, 

e.g., [ 10 , Section 9.2]). 

2.5. The classical Moran’s Theorem 

In [ 21 , Theorem III] (or see [ 10 , Theorem 9.3]), it was pro- 

vided a quite interesting result which allows the calculation 

of the box dimension for a certain class of Euclidean self- 

similar sets through the solution of an easy equation only in- 

volving a finite number of quantities, namely, the similarity 

factors that give rise to its corresponding IFS-attractor. Such 

a classical result is described next. 

Moran’s Theorem (1946) Let F be an Euclidean IFS sat- 

isfying the OSC, whose associated IFS-attractor is K . Let us 

assume that c i is the similarity factor associated with each 

similarity f i . Then dim H (K) = dim B (K) = s, where s is given 

by the next expression: 

k ∑ 

i =1 

c s i = 1 . (2) 

Further, for this value of s , it is satisfied that H 

s 
H 
(K) ∈ (0 , ∞ ). 

It is worth mentioning that Moran also provided in [21, 

Theorem II] a weaker version for the result above, under the 

assumption that all the similarities are equal. 

3. Counterexamples regarding theoretical properties for 

a fractal dimension definition 

Next theorem, which can be found along [10, Section 2.2] , 

contains some analytical properties that are satisfied by our 

key reference for a fractal dimension definition, namely, the 

Hausdorff dimension. These properties will be used along 

this section for comparative purposes regarding our models 

of fractal dimension for a fractal structure as well as the clas- 

sical ones, namely, both the Hausdorff and the box dimen- 

sions. 
Theorem 3.1. 

(1) Monotonicity : if E ⊆ F , then dim H ( E ) ≤ dim H ( F ). 

(2) Finite stability : dim H (E ∪ F ) = max { dim H (E), 
dim (F )} . 

(3) Countable stability : if { F i } i ∈ I is a count able collection 

of sets, then 

dim H 

(⋃ 

i ∈ I 
F i 

)
= sup { dim H (F i ) : i ∈ I} . 

(4) Countable sets : if F is a countable set, then dim H (F ) = 

0 . 

(5) In general, it is not satisfied that dim H (F ) = dim H (F ). 

It is worth mentioning that the latter property, which we 

will refer to as cl − dim , herein, would not be desired (at 

least at a first glance) to be satisfied by any fractal dimension 

definition. The key reason was given in [10, Section 3.2] . In- 

deed, if dim (F ) = dim (F ), for any subset F of X , then it turns

out that a “small” (countable) set of points can wreak havoc 

with the dimension, since it may be non-zero. This consti- 

tutes a technical reason that makes the box dimension be se- 

riously limited from a theoretical point of view. A proof for 

the properties contained in Theorem 3.1 regarding the box 

dimension can be found in [10, Section 3.2] . Interestingly, as 

stated in [10, Chapter 3] , it turns out that all fractal dimen- 

sion definitions are monotonic, and most of them are finitely 

stable. However, some common definitions do not satisfy the 

countable stability property, and even they may throw pos- 

itive values for the dimensions of certain countable sets. In 

fact, this is the case of box dimension. 

Recall that upcoming Table 1 provides a schematic sum- 

mary regarding the properties from Theorem 3.1 that are sat- 

isfied by each fractal dimension definition. We would like to 

point out that the absence of a � sign in that table has been 

properly justified by an appropriate counterexample along 

the present Section 3 . 

Firstly, we would like to highlight that fractal dimensions 

I, II, III and IV are not countably stable. In fact, as we will show

next, there exist countable Euclidean subsets (equipped with 

an induced natural fractal structure), whose fractal dimen- 

sions I, II, III and IV are non-zero. Recall that fractal dimen- 

sions I and III are someway expected to not satisfy such a 

property, since their description is similar to the box dimen- 

sion (in the case of fractal dimension I), or at least, they 
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Fig. 1. Sketch regarding the first level in the construction of the fractal struc- 

ture appeared in Counterexample 3.5 (i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generalize it in the context of Euclidean spaces equipped

with their natural fractal structures (as it happens with frac-

tal dimension III, see [13, Theorem 4.15] , but also with frac-

tal dimension I, see [14, Theorem 3.5] ). Surprisingly, fractal

dimension IV, which matches the Hausdorff dimension for

compact Euclidean subsets from a discrete point of view (re-

call [15, Theorem 3.13] ), does not satisfy such a property, too.

Counterexample 3.2. There exists a countable subset F of

X , such that dim 

k 
�(F ) 
 = 0 , for a certain fractal structure �,

where k = 1 , 2 , 3 , 4 . 

Proof. Let us consider X = [0 , 1] , F = Q ∩ X, and � be the

natural fractal structure on X , whose levels are defined as in

Eq. (3) . 

(i) (See [14, Proposition 3.6 (4)] ). Hence, N n (F ) = 2 n , so

dim 

1 
�(F ) = dim 

2 
�(F ) = 1 . 

(ii) (See [13, Proposition 4.16 (2)] ). Since fractal dimen-

sion III generalizes fractal dimension I in the context

of Euclidean spaces equipped with their natural frac-

tal structures (see [13, Theorem 4.15] ), then dim 

3 
�(F ) =

dim 

1 
�(F ) = 1 , just applying the arguments stated pre-

viously for Counterexample 3.2 (i). 

(iii) (See [15, Proposition 3.4 (1)] ). F is a countable subset

such that F = [0 , 1] . Thus, [15, Theorem 3.13] leads to

dim 

4 
�(F ) = dim H (F ) = 1 . �

On the other hand, it is worth mentioning that fractal

dimension II, which generalizes fractal dimension I, in the

sense that it allows additionally that different diameter sets

could appear in each level of the fractal structure, not even

satisfies the finite stability property (and hence, this cannot

be countably stable, too), as the following counterexample

states. Thus, it turns out that all the fractal dimension defini-

tions considered along this paper are finitely stable with the

exception of fractal dimension II (see Table 1 ). 

Counterexample 3.3. ( [14, Example 4] ) Neither the lower

fractal dimension II nor the upper fractal dimension II are

finitely stable. 

Proof. In fact, let �1 be the natural fractal structure on C 1
as an IFS-attractor, where C 1 is the middle third Cantor set

on [0, 1]. Additionally, let also �2 be a fractal structure on

 2 = [2 , 3] , defined as �2 = { �2 ,n } n ∈ N , where 

�2 ,n = 

{ [ 
k 

2 

2 n 
, 

k + 1 

2 

2 n 

] 
: k ∈ { 2 

2 n +1 , 2 

2 n +1 

+ 1 , . . . , 3 2 

2 n − 1 } 
} 

. 

Thus, let � = { �n } n ∈ N be a fractal structure on C = C 1 ∪ C 2 ,

where its levels are given by �n = �1 ,n ∪ �2 ,n . Finally, sim-

ple calculations lead to dim 

2 
�(C 1 ) = log 2 / log 3 , as well as to

dim 

2 
�(C 2 ) = 1 , whereas dim 

2 
�(C) = log 4 / log 3 > 1 . �

As a consequence of both Counterexamples 3.2 and 3.3 , it

holds that neither of those fractal dimension models involved

therein, namely, fractal dimensions I, II, III, and IV, is count-

ably stable. To deal with, recall that unlike fractal dimensions

I and II, it holds that fractal dimensions III and IV do always

exist. 

Corollary 3.4. Neither the (lower/upper) fractal dimensions I,

II, nor the fractal dimensions III, IV are countably stable. 
The following counterexample points out that fractal di-

mensions I, II, III, V, and VI, do not satisfy the cl-dim property.

Counterexample 3.5. There exist a subset F of a certain

space X , as well as a locally finite starbase fractal structure

�, such that dim 

k 
�(F ) 
 = dim 

k 
�(F ), for k = 1 , 2 , 3 , 5 , 6 . 

Proof. 

(i) (See [14, Proposition 3.6 (5)] ). Let � = { �n } n ∈ N
be a fractal structure defined on X = ([0 , 1] ×
{ 0 } ) ⋃ {{ 1 

2 n 
} × [0 , 1] : n ∈ N } , whose levels are given

by 

�n = 

{ [ 
k 

2 

n 
, 

k + 1 

2 

n 

] 
× { 0 } : k ∈ { 0 , 1 , . . . , 2 

n − 1 } 
} 

⋃ 

{ { 

1 

2 

m 

} 

×
[ 

k 

2 

n 
, 

k + 1 

2 

n 

] 
: k ∈ { 0 , 1 , . . . , 2 

n − 1 } , m ∈ N 

} 

. 

(see Fig. (1 ) for a sketch regarding the first level of that

fractal structure). 

Moreover, let F = 

⋃ 

k ∈ N (
1 

2 k +1 
, 1 

2 k 
) × { 0 } , be a sub-

set of X . Thus, F = [0 , 1] × { 0 } , which implies that

N n (F ) = 2 n , and N n (F ) = ∞ . Hence, dim 

1 
�(F ) = 1 , and

dim 

1 
�(F ) = ∞ , respectively. These arguments also be-

come valid in order to justify that fractal dimension II

does not satisfy the cl − dim property, too. In fact, re-

call that fractal dimension II generalizes fractal dimen-

sion I (in the sense of [14, Theorems 4.6 and 4.7] ), so

any counterexample valid for fractal dimension I, still

remains valid for fractal dimension II. 

(ii) (See [13, Proposition 4.16 (4)] ). Let us consider the

same list ( F, X , �), as provided in Counterexample 3.5

(i). Thus, dim 

3 
�(F ) = 1 , whereas H 

s 
n (F ) = 

∑ 2 n −1 
i =0 

1 
2 ns +∑ ∞ 

i =1 
1 
ns = ∞ , which implies that dim 

3 
�(F ) = ∞ . 
2 



216 M. Fernández-Martínez et al. / Chaos, Solitons and Fractals 89 (2016) 210–223 

 

 

 

 

 

(iii) (See [15, Proposition 3.4 (4)] ). Let � be the natural 

fractal structure on X = [0 , 1] , namely, � = { �n } n ∈ N , 
whose levels are defined as 

�n = 

{ [ 
k 

2 

n 
, 

k + 1 

2 

n 

] 
: k ∈ { 0 , 1 , . . . , 2 

n − 1 } 
} 

, (3) 

and let F = Q ∩ X . Thus, F is a countable subset 

such that F = [0 , 1] . Moreover, since fractal dimen- 

sions V, VI are countably stable, due to [15, Proposi- 

tion 3.4 (3)] ), then dim 

5 
�(F ) = dim 

6 
�(F ) = 0 . However, 

dim 

5 
�(F ) = dim H (F ) = dim 

6 
�(F ) = 1 , since both fractal 

dimensions V, VI do generalize the Hausdorff dimen- 

sion on a Euclidean subspace with the natural fractal 

structure (see [15, Corollary 3.11] ). �

4. Some differences between fractal dimensions I and II 

Recall that fractal dimension I model, which was intro- 

duced previously in Definition 2.3 (1), actually considers all 

the elements in each level of a given fractal structure as 

having the same “size”, equal to 1/2 n . According to that, 

the natural fractal structure which any Euclidean space can 

be equipped with, allows to calculate the box dimension 

through another kind of tilings, such as triangulations on the 

plane, for instance. In particular, this fact becomes quite in- 

teresting since any compact surface always owns a triangu- 

lation. 

On the other hand, if in addition to the fractal structure, a 

distance function is available in the space, then this could be 

applied to “measure” the size of the elements in each level 

of the fractal structure at the same time we use the frac- 

tal structure. This is the case, for instance, of any Euclidean 

space, where we can always consider both the natural fractal 

structure as well as the Euclidean metric. 

The next counterexample points out that fractal dimen- 

sion I depends on a fractal structure, whereas the upcoming 

remark establishes that fractal dimension II also depends on 

a metric. 

Counterexample 4.1. ( [14, Remark 3.11] ) Fractal dimension 

I depends on the fractal structure we choose in order to cal- 

culate it. Mathematically, let X be a subspace of an Euclidean 

space. Then there exist a subset F of X , as well as two dif- 

ferent fractal structures, �1 and �2 , such that dim 

1 
�1 

(F ) 
 = 

dim 

1 
�2 

(F ). 

Proof. Firstly, let �1 be the natural fractal structure on 

the middle third Cantor set C . Thus, by [14, Theorem 3.5] , 

dim 

1 
�1 

(C) = dim B (C) = log 2 / log 3 , where the second equal- 

ity holds by [10, Example 3.3] . On the other hand, let �2 be 

the natural fractal structure on C as a self-similar set (recall 

Definition 2.7 ). Then easy calculations lead to dim 

1 
�2 

(C) = 1 , 

since in each level �2, n of the fractal structure �2 , there are 

2 n “subintervals” whose lengths are equal to 1/3 n . �

Remark 4.2. ( [14, Remark 4.9] ) In Counterexample 4.1 , it was 

shown that the fractal dimension I and the box dimension 

for the middle third Cantor set C are not equal for the natu- 

ral fractal structure �2 on C as a self-similar set. In fact, re- 

call that dim B (C) = log 2 / log 3 , whereas dim 

1 
�2 

(C) = 1 . No- 

tice that such fractal dimensions have been calculated with 
respect to different fractal structures. In fact, while the nat- 

ural fractal structure on C as an Euclidean subset has been 

applied to calculate the box dimension, the natural fractal 

structure on C as a self-similar set has been chosen for frac- 

tal dimension I calculation purposes. However, if the natu- 

ral fractal structure on C as a self-similar set is chosen again, 

then simple calculations allow to prove both the fractal di- 

mension II and the box dimension for C are equal: 

dim 

2 
�2 

(C) = lim 

n →∞ 

log 2 

n 

− log 3 

−n 
= 

log 2 

log 3 

= dim B (C), 

since in level n of that fractal structure, there are 2 n “subin- 

tervals” whose diameters are equal to 1/3 n . 

According to that, the fractal dimension II value for the 

middle third Cantor set (equipped with its natural fractal 

structure as an Euclidean subpace) agrees with the box di- 

mension for such a self-similar set. Even more, though the 

value obtained for the fractal dimension I of C may seem 

counterintuitive at a first glance, it still becomes possible to 

justify it through its fractal dimension II. Once again, the key 

reason lies in the advanced fact that fractal dimension I only 

depends on the chosen fractal structure. This is emphasized 

in the following remark. 

Remark 4.3. ( [14, Remark 4.10] ) Fractal dimension I only de- 

pends on a fractal structure, whereas fractal dimension II also 

depends on the (“maximum”) diameter of the elements in 

each level of that fractal structure. To show this underlying 

difference, we construct a family of spaces such that from the 

point of view of fractal structures are the same. 

Proof. To deal with, let us consider slight modifications re- 

garding the standard middle third Cantor set C , which we will 

refer to as C i . Further, let us assume that their associated sim- 

ilarity factors are c i ∈ [ 1 3 , 
1 
2 ), for each of the two similarities

that give rise to C i . These sets can be defined as the attractor

of the IFS { f 1 i , f 2 i }, where the similarities f 1 i , f 2 i : R → R are

given by f 1 i (x) = c i x and f 2 i (x) = (1 − c i ) + c i x for each x ∈ R .

Hence, δ(C i , �n ) = c n 
i 
, for all n ∈ N . In addition to that, let us

consider the natural fractal structure on each space C i as a 

self-similar set, denoted by �i . Then easy calculations lead to 

(or apply [14, Theorem 4.19] , as well): 

dim B (C i ) = dim 

2 
�i 
(C i ) = 

log 2 

− log c i 
−→ 1 = dim 

1 
�(C), 

wherever c i → 1/2, where � is the natural fractal structure on 

C as a self-similar set (note that � was denoted by �2 in the 

two previous examples). �

5. Justifying some requirements to several fractal 

dimension definitions regarding fractal structures 

In this section, we provide some counterexamples in or- 

der to justify some properties, than being quite natural to be 

assumed regarding the levels of a fractal structure, have to 

be required to guarantee that fractal dimensions III, IV and V, 

do behave like the Hausdorff dimension (see Fig. 2 at the end 

of this section). This has been carried out along forthcoming 

Section 5.2 . Previously, in Section 5.1 , we explain why the ex- 

pression δ( F, �n ) should be used for fractal dimension II cal- 

culation purposes, instead of δ( �n ), which would be, at least 

a first glance, another valid option. 
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Fig. 2. Graphical representation of s vs. H 

s 
3 (F ), where F = [0 , 1] × [0 , 1] , and � is its natural fractal structure (note that δ( F, �n ) � 0) (above), and plot of s vs. 

H 

s 
k 
(F ) : k = 3 , 4 , 5 , under the assumption δ( F, �n ) → 0, which, however, is not required for fractal dimension VI (see Lemma 5.3 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Why δ( F, �n ) is used for fractal dimension II instead of 

δ( �n ). 

As it was stated previously, the fractal dimension II for

any subset F of X , “measures” the size of the elements in any

level of a fractal structure through a distance function. This

is done by means of δ(F , �n ) = sup { diam (A) : A ∈ A n (F )} ,
where A n (F ) = { A ∈ �n : A ∩ F 
 = ∅} . On the other hand, it

seems that δ(�n ) = sup { diam (A) : A ∈ �n } could be consid-

ered, at least at a first glance, in Definition 2.3 (2), instead of

δ( F, �n ). However, δ( F, �n ) yields a wider applied dimension

than δ( �n ), as it is shown next. 

Counterexample 5.1. ( [14, Example 3] ) There exist a

bounded Euclidean subset F , a fractal structure � on R 

d , and

a natural number n 0 , such that δ(�n ) = ∞ , for all n ∈ N ,

whereas δ( F, �n ) < ∞ , for all n ≥ n 0 . 

Proof. In fact, let � = { �n } n ∈ N , be a finite fractal structure

defined on the Euclidean space R 

d , whose levels are defined

by 

�n = 

{[
k 1 
2 

n 
, 

k 1 + 1 

2 

n 

]
× · · ·
×
[

k d 
2 

n 
, 

k d + 1 

2 

n 

]
: k 1 , . . . , k d ∈ {−n 2 

n , . . . , n 2 

n − 1 } 
}

∪{ R 

d \ ( − n, n)d } . 
Hence, for any bounded subset F of R 

d , it holds that δ(�n ) =
∞ , for all n ∈ N , where such a “diameter” has been calculated

with respect to the Euclidean distance. However, there exists

a natural number n 0 , such that δ( F, �n ) < ∞ , for all n ≥ n 0 . �

5.2. Why δ( F, �n ) must be a 0-convergent decreasing 

sequence in several Hausdorff type models of fractal dimension 

for a fractal structure 

Next, we point out that the “natural” assumption con-

sisting of δ( F, �n ) → 0 becomes necessary to guarantee that

some Hausdorff type fractal dimensions for a fractal struc-

ture, do indeed behave like that classical model. 

Counterexample 5.2. If δ( F, �n ) → 0, then inf { s : H 

s 
k 
(F ) =

0 } = sup { s : H 

s 
k 
(F ) = ∞} , for k = 3 , 4 , 5 . Otherwise, that

equality cannot be guaranteed, in general. 
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Proof. In fact, let � = { �n } n ∈ N , be a fractal structure defined 

on X = [0 , 1] , whose levels are given as 

�n = 

{[
0 , 

1 

2 

]
, 

[
1 

2 

, 1 

]}

⋃ 

{[
k 

2 

n 
, 

k + 1 

2 

n 

]
: k ∈ { 1 , . . . , 2 

n − 1 } 
}

. 

Then the four following hold for all n ∈ N : 

• δ(X, �n ) = 1 / 2 . 

• Moreover, 

H 

s 
n, 3 (X ) = inf 

{
2 

2 

s 
+ (2 

m − 1 )
1 

2 

ms 
: m ≥ n 

}
. 

Hence, 

H 

s 
3 (X ) = 

{∞ if s < 1 

2 

1 −s if s > 1 . 

• On the other hand, observe that any cover of X through 

elements of �n , for some n ∈ N , must contain the set 

[0 , 1 2 ] . Accordingly, H 

s 
n, 4 

(X) ≥ 1 
2 s 

, for each n ∈ N , so 

H 

s 
4 
(X) ≥ 1 

2 s 
. Thus, for s > 1, it holds that H 

s 
4 
(X) = 

1 
2 s 

(since for the natural fractal structure, H 

s 
4 
(X) = 0 ), 

whereas for s < 1, H 

s 
4 
(X) = 

2 
2 s 

(since we can use the 

cover { [0 , 1 2 ] , [ 
1 
2 , 1] } ). 

• Similar arguments to those applied to deal with the 

fractal dimension IV case allows us to affirm that 

H 

s 
5 (X ) = 

{
2 

1 −s if s < 1 

2 

−s if s > 1 . �

However, for k = 6 , it holds that the condition δ( F, �n ) → 

0 is not required to reach the identity inf { s : H 

s 
k 
(F ) = 0 } =

sup { s : H 

s 
k 
(F ) = ∞} , though it may be desirable. In fact, for 

instance, in Counterexample 5.2 , it holds that any cover of 

[0, 1] by elements of level n , for some n ∈ N , must con- 

tain the subinterval [0 , 1 2 ] . Thus, A δ, 6 (X) = ∅ , for δ < 

1 
2 , so 

H 

s 
6 
(X) = ∞ , for each s ≥ 0. Therefore, dim 

6 
�(X) = ∞ . 

Lemma 5.3. inf { s : H 

s 
6 
(F ) = 0 } = sup { s : H 

s 
6 
(F ) = ∞} . 

Proof. Fix δ > 0. Let C ∈ A δ, 6 (F ), and t, s be positive real 

numbers. Then it holds that 

∑ 

A ∈C 
diam (A)t ≤ δt−s 

∑ 

A ∈C 
diam (A)s . (4) 

Hence, 

H 

t 
δ, 6 (F ) ≤ δt−s H 

s 
δ, 6 (F ). (5) 

Moreover, if we take limits as δ → 0 in Eq. (5) , then 

H 

t 
6 (F ) ≤ H 

s 
6 (F ) lim 

δ→ 0 
δt−s . 

Accordingly, if it is assumed that H 

s 
6 
(F ) < ∞ , provided 

that t > s , then H 

t 
6 
(F ) = 0 . Therefore, dim 

6 
�(F ) = inf { s : 

H 

s (F ) = 0 } = sup { s : H 

s (F ) = ∞} . �

6 6 
6. Counterexamples involving fractal dimensions for 

IFS-attractors 

The main purpose in this section is to emphasize that 

some hypothesis required in several Moran type theorems 

are necessary. These theoretical results, that we will recall 

next, have been proved for fractal dimensions developed in 

the context of fractal structures (recall Section 2.3 ). In this 

way, it is also worth mentioning that some of these mod- 

els allow to generalize classical fractal dimensions to fractal 

structures. 

To deal with, firstly, recall that Moran’s Theorem (see 

Section 2.5 ) allows to easily calculate both the Hausdorff and 

the box dimensions for strict self-similar sets coming from 

Euclidean IFS satisfying the OSC. In fact, such a classical re- 

sult throws both Hausdorff and box dimensions as the solu- 

tion of an equation which only involves the similarity factors 

that give rise to the corresponding IFS-attractor. 

Additionally, it is worth mentioning that the result pro- 

vided below allowed its authors to reach the equality be- 

tween both box dimension and fractal dimension II for strict 

self-similar sets whose IFS are under the OSC. Moreover, the 

calculation of such quantity is immediate from the number 

of similarities in the IFS and their common similarity factor. 

Theorem 6.1. ( [14 , Theorem 4.19]) Let F = { f i : i ∈ I} be an Eu-

clidean IFS satisfying the OSC, whose associated IFS-attractor is 

K. Moreover, let us assume that all the similarities in F have a 

common similarity factor, c ∈ (0, 1) . Thus, if � is the natural 

fractal structure on K as a self-similar set, then 

dim B (K) = dim 

2 
�(K) = 

− log k 

log c 
. (6) 

Next, we point out that the hypothesis regarding the 

equality among the similarity factors in Theorem 6.1 be- 

comes necessary. 

Counterexample 6.2. ( [14, Remark 4.20] ) There exists an Eu- 

clidean IFS F satisfying the OSC, having different contrac- 

tion factors, and whose associated IFS-attractor K , which is 

equipped with its natural fractal structure as a self-similar 

set, satisfies that dim B (K) < dim 

2 
�(K). 

Proof. Let F be an Euclidean IFS, whose similarities f 1 , f 2 : 

R −→ R are defined by 

f i (x) = 

{
x 
2 

if i = 1 ;
x +3 

4 
if i = 2 . 

Observe that their associated contraction factors are c 1 = 

1 / 2 , and c 2 = 1 / 4 , respectively. Moreover, it holds that K is

a strict self-similar set. Further, we can also justify that the 

IFS F satisfies the OSC. In fact, just take V = (0 , 1 ), as an ap-

propriate open subset. Hence, the Moran’s Theorem allows 

to affirm that the box dimension of K is the solution of the 

equation 

1 
2 s 

+ 

1 
4 s 

= 1 . Thus, dim B (K) = log ( 1+ √ 

5 
2 )/ log 2 . On 

the other hand, there are 2 n subintervals of [0, 1], in each 

level n of the fractal structure �, where the largest of them 

has a diameter equal to 1/2 n . Accordingly, dim 

2 
�(K) = 1 > 

dim B (K). �

In the next theorem, we explored which properties re- 

garding the natural fractal structure on any Euclidean space 
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could allow to generalize [14, Theorem 4.19] . In this way, it

is worth mentioning that, fixed a scale δ > 0, then it is sat-

isfied that any Euclidean subset F of R 

d , with diam ( F ) ≤ δ,

intersects at most 3 d δ-cubes. Given this, a similar property

in the more general context of fractal structures allowed the

authors to find out an additional link between fractal dimen-

sion II and box dimension. 

Theorem 6.3. ( [14 , Theorem 4.13]) Let F be a subset of a met-

ric space ( X, ρ), and let � be a fractal structure on X. Moreover,

assume that there exists k ∈ N , such that, for all n ∈ N , every

subset A of X, with diam ( A ) ≤ δ( F, �n ), intersects at most k el-

ements in level n of �. Additionally, let us suppose also that δ( F,

�n ) → 0. Then , 

(1) dim B (F ) ≤ dim 

2 
�(F ) ≤ dim 

2 

�(F ) ≤ dim B (F ). Further, if

there exists dim B ( F ), then dim B (F ) = dim 

2 
�(F ). 

(2) If there exists a constant c ∈ (0, 1), such that c δ(F , �n ) ≤
δ(F , �n +1 ), then dim B (F ) = dim 

2 

�(F ), and dim B (F ) =
dim 

2 
�(F ). 

In this way, the following counterexample establishes

the need for the main hypothesis required in Theorem 6.3

in order to reach the equality between both the box di-

mension and the fractal dimension II. Accordingly, while

Counterexample 6.2 allows to guarantee that all the simi-

larity factors must be the same, the counterexample below

shows that all the contractions in F must be similarities, as

well. 

Counterexample 6.4. ( [14, Remark 4.14] ) There exists an Eu-

clidean IFS F , whose associated IFS-attractor K , equipped

with its natural fractal structure � as a self-similar set, sat-

isfies that 

dim B (K) 
 = dim 

2 
�(K). 

Proof. Let I = { 1 , . . . , 8 } be a finite index set, and (R 

2 , F)
be an Euclidean IFS, whose associated IFS-attractor is K =
[0 , 1] × [0 , 1] . In addition to that, let us define the contrac-

tions f i : R 

2 −→ R 

2 , as follows: 

f i (x, y) = 

{
( x 

2 
, 

y 
4 
) + (0 , i −1 

4 
) if i = 1 , 2 , 3 , 4 ;

( x 
2 
, 

y 
4 
) + ( 1 

2 
, i −5 

4 
) if i = 5 , 6 , 7 , 8 . 

Moreover, let � be the natural fractal structure on K as a

self-similar set. First of all, notice that the self-maps f i are not

similarities but affinities, and that all the mappings have the

same contraction factor, namely, c i = 1 / 2 , for all i ∈ I . Further,

it also becomes immediate that dim B (K) = 2 . On the other

hand, note that there are 8 n rectangles in level n of �, whose

dimensions are 1 
2 n 

× 1 
2 2 n 

. Thus, it is satisfied that 

diam (A) = δ(K, �n ) = 

√ 

1 + 2 

2 n 

2 

4 n 
, 

for all A ∈ �n . Hence, 

dim 

2 
�(K) = lim 

n →∞ 

log N n (K)

− log δ(K, �n )
= lim 

n →∞ 

3 n log 2 

− 1 
2 

log 1+2 2 n 

2 4 n 

= lim 

n →∞ 

3 n log 2 

n log 2 

= 3 . 

In addition to that, let us find out the ratio between

δ( K, �n ) and each side of any 1 
2 n 

× 1 
2 n -rectangle. In fact,
2 
it holds that 

√ 

1+2 2 n 

2 4 n 

1 

2 2 n 

= 

√ 

1 + 2 2 n > 2 n , and that 

√ 

1+2 2 n 

2 4 n 

1 
2 n 

=√ 

1 + 

1 
2 2 n 

≥ 1 
2 n 

, for all n ∈ N . Therefore, each subset A of K ,

whose diameter is at most equal to 

√ 

2 2 n +1 
2 4 n 

, intersects at

most 3 2 n +1 elements A ∈ �n . Consequently, given that such

a quantity depends on each n ∈ N , then we conclude that the

key hypothesis in Theorem 6.3 is not satisfied. �

In [13] , the authors contributed an interesting theorem in

the line of the Moran’s classical one, which allowed them to

calculate the so-called fractal dimension III as the solution of

an easy equation which only involves the similarity factors

associated with each similarity in the corresponding IFS. The

main advantage of such a result lies in the fact that the OSC

is not required to be satisfied by that IFS, in order to apply

that theoretical result. However, if the OSC is also satisfied,

then such a fractal dimension equals both box and Hausdorff

dimensions. It is worth mentioning that these results make

use of the natural fractal structure that each self-similar set

can be equipped with (recall Definition 2.7 ). Next, we recall

that result. 

Theorem 6.5. ( [13 , Theorem 4.20]) Let F be an IFS on a com-

plete metric space, whose associated IFS-attractor is K. In addi-

tion to that, let c i be the similarity factor associated with each

similarity f i ∈ F , and assume that � is the natural fractal struc-

ture on K as a self-similar set. Then, it is satisfied that 

∑ 

i ∈ I 
c 

dim 

3 
�(K)

i 
= 1 . 

Furthermore, it is also satisfied that H 

dim 

3 
�(K)

3 
(K) ∈ (0 , ∞ ). 

We would like to point out, through the following coun-

terexample, that the hypothesis regarding the strict self-

similarity of the IFS-attractor in Theorem 6.5 , still becomes

necessary. 

Counterexample 6.6. ([ 13 , Remark 4.21]) There exists an Eu-

clidean IFS F , whose associated (non-strict) IFS-attractor K ,

which is equipped with its natural fractal structure as a self-

similar set, satisfies that s 
 = dim 

3 
�(K), where s is the solution

of the equation 

∑ 

i ∈ I c s i = 1 , and c i is the contraction factor

associated with each contraction f i ∈ F . 

Proof. Let I = { 1 , . . . , 8 } be a finite index set, F = { f i : i ∈
I} , and (R 

2 , F) be an Euclidean IFS, whose associated IFS-

attractor is K = [0 , 1] × [0 , 1] . Moreover, let f i : R 

2 −→ R 

2 be

the contractions given by 

f i (x, y) = 

{
(−y 

2 
, x 

4 
) + ( 1 

2 
, i −1 

4 
) if i = 1 , 2 , 3 , 4 ;

(−y 
2 

, x 
4 
) + (1 , i −5 

4 
) if i = 5 , 6 , 7 , 8 . 

First of all, observe that the self-similar set K is not strict.

Further, it holds that the contractions f i are compositions of

affine maps: rotations, dilations (in the plane and with re-

spect to one coordinate), and translations. Moreover, it is also

clear that all the contractions f i have the same contraction

factor, equal to 1/2. Thus, s = 3 is the solution of 
∑ 

i ∈ I c s i = 1 .

On the other hand, we affirm that dim 

3 
�(K) = 2 . To show that,

let us calculate the fractal dimension III of K through [13, The-

orem 4.17] . In fact, let us start by analyzing the even levels
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in �. Thus, for all n ∈ N , it holds that every level �2 n con- 

sists of squares having sides equal to 1/8 n . Moreover, it is 

also clear that diam (A) = δ(K, �2 n ) = 

√ 

2 / 8 n , for all A ∈ �2 n . 

This implies that δ( K, �2 n ) → 0. Now, let us check the main 

hypothesis in [13, Theorem 4.17] . Thus, let us calculate the 

maximum number of elements in �2 n which are intersected 

by a subset B , whose diameter is at most equal to 
√ 

2 / 8 n . In 

fact, the ratio between the diameter of each square in �2 n 

and its side is 
√ 

2 < 2 , which allows to state that the num- 

ber of elements in A 2 n (B) is at most 3 in each direction, for 

all subset B having diam ( B ) < δ( K, �2 n ). Accordingly, we can 

choose k = 9 as a suitable constant for the even order levels 

in the fractal structure �. Similarly, it can be checked that 

all the odd order levels �2 n +1 consist of rectangles whose 

dimensions are 1 
2 ·8 n × 1 

4 ·8 n . Further, observe that all the el- 

ements in each level �2 n +1 have the same diameter, equal to √ 

5 
4 ·8 n . Hence, the sequence of diameters δ(K, �2 n +1 ) also goes 

to 0. To check that, the following ratios between the diam- 

eter and the sides of each rectangle yields: 
1 
4 

·
√ 

5 
8 n 

1 
2 

· 1 
8 n 

= 

√ 

5 
2 < 2 , 

and 

1 
4 

·
√ 

5 
8 n 

1 
4 

· 1 
8 n 

= 

√ 

5 < 3 , respectively. Therefore, each subset A 

whose diameter is at most equal to δ(K, �2 n +1 ), has to in- 

tersect, at most, to k = 12 elements in each odd level �2 n +1 . 

Consequently, the main hypothesis in [13, Theorem 4.17] is 

satisfied. Thus, dim B (K) = dim 

3 
�(K) = 2 . �

Recall that the next corollary follows as a consequence of 

both Theorem 6.5 and classical Moran’s one. 

Corollary 6.7. ( [13 , Corollary 4.22]) Let F be an Euclidean IFS 

satisfying the OSC, whose associated IFS-attractor is K. Thus, if 

� is the natural fractal structure on K as a self-similar set, then 

the following chain of equalities holds: 

dim B (K) = dim 

3 
�(K) = dim H (K). 

However, as the next counterexample states, Corollary 6.7 

cannot be improved in the sense that the OSC is still needed 

in order to achieve such a result. 

Counterexample 6.8. ( [13, Remark 4.23] ) There exists an Eu- 

clidean IFS F (not satisfying the OSC), whose associated IFS- 

attractor K , equipped with its natural fractal structure � as a 

self-similar set, satisfies that dim H (K) 
 = dim 

3 
�(K). 

Proof. Let I = { 1 , 2 , 3 } be a finite index set, F = { f i : i ∈
I} , and (R , F) be an Euclidean IFS, whose associated IFS- 

attractor K = [0 , 1] , satisfies the following Hutchinson’s 

equation: K = 

⋃ 

f∈F f (K). Further, let f i : R −→ R be the con- 

tractions defined as 

f i (x) = 

⎧ ⎨ 

⎩ 

x 
2 

if i = 1 ;
x +1 

2 
if i = 2 ;

2 x +1 
4 

if i = 3 . 

Moreover, let also � be the natural fractal structure on 

K as a self-similar set. Firstly, observe that all the contrac- 

tions f i are similarities having a common similarity factor, 

equal to 1/2. Therefore, K is a strict self-similar set on the 

real line. Thus, Theorem 6.5 gives that dim 

3 
�(K) is the solu- 

tion of 
∑ 

i ∈ I c s i = 1 . Thus, dim 

3 
�(K) = log 3 / log 2 . On the other 

hand, both [13, Theorem 4.10] and [14, Theorem 4.15] , lead to 

dim 

1 
�(K) = dim 

2 
�(K) = log 3 / log 2 = dim 

3 
�(K), since all the 
elements in level n of � have a diameter whose order is equal 

to 1/2 n . Finally, we affirm that F does not satisfy the OSC. In

fact, suppose the opposite. Then Corollary 6.7 would imply 

that dim 

3 
�(K) must be equal to dim H (K) = 1 , which is a con- 

tradiction. Hence, the result follows. �

7. Counterexamples to highlight that some fractal 

dimensions do not coincide in general 

Fractal structures allow to generalize the classical mod- 

els of fractal dimension in the more general context of GF- 

spaces. To deal with, some new models for fractal dimen- 

sion with respect to a fractal structure have been explored 

along this paper (recall Section 2.3 ). It turns out that each one 

of them presents some properties and features that make it 

more appropriate than the rest of them depending on each 

specific context. Moreover, some results have been explored 

in previous works in order to achieve equalities between 

those fractal dimension definitions. We would like to point 

out that these kind of theoretical results allow to interplay 

these definitions to powerful their effect, as Falconer states 

in the context of classical fractal dimension models (see [10, 

Section 3.2] ). It is worth mentioning that this kind of theo- 

retical results involve conditions regarding the elements of 

a fractal structure and restrictions about the construction of 

IFS-attractors, as well. In this section, though, we provide 

some counterexamples that emphasize the fact that several 

fractal dimension models for a fractal structure do not agree, 

in general. 

To start with, we state that fractal dimensions I and II do 

not always match. 

Counterexample 7.1. ( [14, Remarks 3.11 4.9] ) There exist a 

subset F of a given space X , as well as a fractal structure � on

X , such that dim 

1 
�(F ) 
 = dim 

2 
�(F ). 

Proof. Let X = R , C be the middle third Cantor set, and � be

the natural fractal structure on C as a self-similar set. Then it 

holds that 

dim 

2 
�(C) = lim 

n →∞ 

log 2 

n 

− log 3 

−n 
= 

log 2 

log 3 

, 

since in each level �n of that fractal structure, there are 2 n 

“subintervals” whose diameters are equal to 1/3 n . That argu- 

ment also remains valid to get dim 

1 
�(C) = 1 . �

The following counterexample points out that fractal di- 

mension III can be different from both fractal dimensions I 

and II. 

Counterexample 7.2. ( [13, Remark 4.24] ) There exists an Eu- 

clidean IFS F , whose associated IFS-attractor K , equipped 

with its natural fractal structure � as a self-similar set, sat- 

isfies that 

dim 

1 
�(K) = dim 

2 
�(K) 
 = dim 

3 
�(K). 

Proof. In fact, let I = { 1 , 2 , 3 } be a finite index set, F =
{ f i : i ∈ I} , and (R , F) be an Euclidean IFS, whose associated

IFS-attractor K = [0 , 1] , satisfies the following Hutchinson’s 

equation: K = 

⋃ 

f∈F f (K). Moreover, let f i : R −→ R be the 

contractions given by 
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Fig. 3. First two levels in the construction of the modified Hilbert’s curve. 
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f i (x) = 

⎧ ⎨ 

⎩ 

x 
2 

if i = 1 ;
x +2 

4 
if i = 2 ;

x +3 
4 

if i = 3 . 

On the other hand, let � be the natural fractal structure

on K as a self-similar set. It becomes also clear that the maps

f i are similarities, so the IFS-attractor K is a strict self-similar

set. We also affirm that F satisfies the OSC. In fact, just take

 = (0 , 1 ) as an appropriate open set. Thus, notice that [13,

Corollary 4.22] leads to dim 

3 
�(K) = dim B (K) = dim H (K) = 1 .

Furthermore, note that in each level n of the fractal structure

�, there are 3 n subintervals contained in [0, 1]. Hence, since

δ(K, �n ) = 1 / 2 n , then dim 

2 
�(K) = log 3 / log 2 = dim 

1 
�(K). In

fact, that result becomes straightforward by applying both

Definition 2.3 (2) and [14, Theorem 4.15] , respectively. �

It is worth mentioning that the unique choice in order to

study the fractal dimension of a curve through the classical

models for fractal dimension is to calculate the fractal dimen-

sion for the graph of the curve. In addition to that, fractal di-

mension III (introduced in Definition 2.4 and calculated as

in [13, Theorem 4.7] ) still could be applied for that purpose.

In fact, this fractal dimension model for a fractal structure

considers the structure of the curve as well as the complex-

ity of the procedure applied in order to generate it. To deal

with, first we define an appropriate induced fractal structure

on (the parametrization of) any curve from a fractal structure

on the closed unit interval. 

Definition 7.3. ( [17, Definition 3.1] ) Let α : [0 , 1] −→ X be a

parametrization of a curve, X be a metric space, and � be a

fractal structure on [0, 1]. Thus, the fractal structure induced

by � on the image set α([0, 1]) ⊆ X , is defined as the count-

able family of coverings � = { �n } n ∈ N , where its levels are

given by �n = α(�n ) = { α(A) : A ∈ �n } . 
The fractal dimension for the parametrization of a given

curve can be defined from both the induced fractal struc-

ture (as given in Definition 7.3 ) and the fractal dimension III

model, as follows. 

Definition 7.4. ( [17, Definition 3.3] ) Let ρ be a distance on X ,

and α : [0 , 1] −→ X be a parametrization of a curve. Let also

� be a fractal structure on [0, 1], and � be the fractal struc-

ture induced by � on the image set α([0, 1]) ⊆ X . Then the

fractal dimension of the (parametrization of the) curve α is

defined as dim �(α) = dim 

3 
�(α([0 , 1] )). Further, if no addi-

tional information regarding the starting fractal structure �
is provided, then we will assume that � is the natural fractal
structure on [0, 1]. In that case, the fractal dimension of the

curve will be denoted, merely, by dim (α) = dim 

3 
�(α([0 , 1] )).

The next counterexample we provide presents a curve

which, as the classical Hilbert’s curve does, also fills the

whole unit square, though its fractal dimension does not

agree with its box dimension nor its Hausdorff dimension.

Thus, it shows that Definition 7.4 of fractal dimension results

more accurate than the classical models of fractal dimension,

since it also takes into account the procedure followed to

construct it. 

Counterexample 7.5. ( [17, Example 3] ) A modified Hilbert’s

curve β , which crosses twice some elements in each level of

its induced fractal structure �, can be constructed in order

to prove that its fractal dimension is different from both its

box and its Hausdorff dimensions, which are calculated with

respect to the image set β([0, 1]). 

Proof. Indeed, let � = { �n } n ∈ N be a fractal structure on [0,

1], whose levels are given by 

�n = 

{ [ 
k 

5 

n 
, 

k + 1 

5 

n 

] 
: k ∈ { 0 , 1 , . . . , 5 

n − 1 } 
} 

. 

Let us consider also the curve β : [0 , 1] −→ Y, that we will

define through [17, Theorem 3.6] , where Y = [0 , 1] × [0 , 1]

has been equipped with the Euclidean distance. Moreover,

let also � be the fractal structure induced by � on β([0, 1]).

Thus, the definition of the modified Hilbert’s curve is given

by the sequence of maps { βn } n ∈ N , where the description of

each map βn : �n −→ �n , is illustrated in Fig. 3 for its first

two levels. Observe that the polygonal line shows the pro-

cedure that must be followed in order to fill the whole unit

square in each stage. 

Moreover, notice that the elements in the first level �1

of the induced fractal structure are given as β([0 , 1 5 ] ) =
β([ 1 5 , 

2 
5 ] ) = [0 , 1 2 ] 

2 , β([ 2 5 , 
3 
5 ] ) = [ 1 2 , 1] × [0 , 1 2 ] , β([ 3 5 , 

4 
5 ] ) =

[ 1 2 , 1] 2 , and β([ 4 5 , 1] ) = [0 , 1 2 ] × [ 1 2 , 1] , for instance. Notice

that the subsequent levels can be obtained in a similar

way. In addition to that, it holds that dim B (β([0 , 1] )) =
dim H (β([0 , 1] )) = 2 , since the modified Hilbert’s curve fills

the whole unit square. 

On the other hand, H 

s 
n (β([0 , 1] )) = (

√ 

2 )s ( 5 
2 s 

)n , since

there are 5 n “subsquares” (having a diameter equal to 
√ 

2 / 2 n ,

each) which intersect β([0, 1]) in level n of the induced
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fractal structure �. Accordingly, 

H 

s (β([0 , 1] )) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∞ if s < 

log 5 
log 2 

;
√ 

5 if s = 

log 5 
log 2 

;
0 if s > 

log 5 
log 2 

, 

which leads to dim (β) = log 5 / log 2 . �

Counterexample 7.6. There exist a certain subspace X , as 

well as a fractal structure � on X , such that dim 

3 
�(X) 
 = 

dim 

5 
�(X), and dim 

3 
�(X) 
 = dim 

4 
�(X). 

Proof. Let X = β([0 , 1] ), and � be as � in 

Counterexample 7.5 . Firstly, recall that Counterexample 7.5 

gives that dim 

3 
�(X) = log 5 / log 2 . On the other hand, note 

that the fractal dimension V of X with respect to the natural 

fractal structure is equal to 2, and hence, dim 

5 
�(X) = 2 , 

due to the relationship between � and the natural fractal 

structure. Similarly, dim 

4 
�(X) = 2 . �

Interestingly, the fractal dimension IV introduced in 

Definition 2.5 (1) provides an intermediate model between 

the Hausdorff and the box dimensions, as the following coun- 

terexample establishes. 

Counterexample 7.7. ( [15, Remark 3.15] ) 

(1) There exist a subset F of a metric space ( X, ρ), and a 

fractal structure � on X , such that dim 

4 
�(F ) < dim B (F ). 

(2) There exist a subset F of a metric space ( X, ρ), and a 

fractal structure � on X , such that dim H (F ) < dim 

4 
�(F ). 

Proof. 

(1) Let � be the natural fractal structure on [0, 1], and F = 

{ 0 , 1 , 1 2 , 
1 
3 , . . . } . First, note that [10, Example 3.5] yields 

dim B (F ) = 1 / 2 . Thus, since F is a compact Euclidean 

subset, then [15, Theorem 3.12] leads to dim 

4 
�(F ) = 

dim H (F ) = 0 , since F is countable. 

(2) Let � be the natural fractal structure on X = [0 , 1] , and 

F = Q ∩ X . Thus, note that [15, Theorem 3.13] yields 

dim 

4 
�(F ) = dim H (F ) = 1 , though dim H (F ) = 0 . �

Further, it holds that fractal dimensions IV and V do not 

always coincide. 

Counterexample 7.8. There exist a subset F of a certain space 

X , as well as a fractal structure � on X , such that dim 

4 
�(F ) 
 = 

dim 

5 
�(F ). 

Proof. Let � be the natural fractal structure on X = 

[0 , 1] , and F = Q ∩ X . Thus, [15, Theorem 3.13] leads to 

dim 

4 
�(F ) = dim H (F ) = 1 , whereas [15, Theorem 3.10] gives 

that dim 

5 
�(F ) = dim H (F ) = 0 . �

Nevertheless, though both Hausdorff dimension and frac- 

tal dimension VI implicitly assume that δ( F, �n ) → 0, they do 

not coincide, in general, as the following example establishes. 

Counterexample 7.9. There exist a certain space X , as well as 

a fractal structure � on X , such that dim H (X) 
 = dim 

6 
�(X). 

Proof. Let � = { �n } n ∈ N a fractal structure on X = R 

2 , whose 

levels are given as follows: 
�n = 

{[
k 

2 

n 
, 

k + 1 

2 

n 

]
× { x } : k ∈ Z , x ∈ R 

}
. 

In other words, it is considered the natural fractal struc- 

ture on each horizontal straight line in R 

2 . Thus, while the 

fractal dimension VI for each horizontal subinterval is equal 

to 1, the fractal dimension VI for each vertical subinterval 

is equal to ∞ , since A δ, 6 (X) = ∅ . This is due to the fact that

there are no countable coverings by elements in the frac- 

tal structure �, since its elements are horizontal segments 

which do intersect the vertical ones just in a single point. 

It is also worth mentioning that the topology induced by 

such a fractal structure � does not agree with the usual 

topology. �

Finally, we would like to end the paper through an inter- 

esting open question involving fractal dimensions V and VI. 

Open question 7.10. Does there exist a fractal structure � on 

a space X and a subset F ⊆ X with δ( F, �n ) → 0 and such that

dim 

5 
�(F ) 
 = dim 

6 
�(F )? 

Recall that some conditions regarding the fractal struc- 

ture were provided in [15, Theorem 3.7] in order to reach the 

equality dim 

5 
�(F ) = dim 

6 
�(F ). 

Acknowledgments 

M. Fernández-Martínez specially acknowledges the valu- 

able support provided by Centro Universitario de la Defensa 

en la Academia General del Aire de San Javier (Murcia, Spain). 

Magdalena Nowak was partially supported by National Sci- 

ence Centre Grant DEC-2012/07/N/ST1/03551 . M.A. Sánchez- 

Granero acknowledges the support of the Ministry of Econ- 

omy and Competitiveness of Spain, Grant MTM2012-37894- 

C02-01 . 

References 

[1] Arenas FG , Sánchez-Granero MA . A characterization of non- 
archimedeanly quasimetrizable spaces. Rend Istit Mat Univ Trieste 

Suppl 1999;XXX:21–30 . 

[2] Arenas FG , Sánchez-Granero MA . A new approach to metrization. 
Topology Appl 2002;123(1):15–26 . 

[3] Arenas FG , Sánchez-Granero MA . A new metrization theorem. Boll 
Unione Mat Ital B 2002;5(8):109–22 . 

[4] Arenas FG , Sánchez-Granero MA . A characterization of self-similar 
symbolic spaces. Mediterr J Math 2012;9(4):709–28 . 

[5] Bandt C , Retta T . Topological spaces admitting a unique fractal struc- 

ture. Fund Math 1992;141:257–68 . 
[6] Besicovitch AS . Sets of fractional dimensions IV: on rational approxi- 

mation to real numbers. J Lond Math Soc 1934;9:126–31 . 
[7] Besicovitch AS , Ursell HD . Sets of fractional dimensions V: on di- 

mensional numbers of some continuous curves. J Lond Math Soc 
1937;12:18–25 . 

[8] Brown C , Liebovitch L . Fractal analysis. Series 07-165: Quantitative ap- 

plications in the social sciences. 1st. New York: SAGE Publications Inc.; 
2010 . 

[9] Carathéodory C . Über das lineare mass von punktmengen-eine verall- 
gemeinerung das längenbegriffs. Nach Ges Wiss Göttingen 1914:406–

26 . 
[10] Falconer K . Fractal geometry: mathematical foundations and applica- 

tions. Chichester: John Wiley & Sons; 1990 . 

[11] Falconer K . Fractal geometry: mathematical foundations and applica- 
tions. 3rd. Chichester: John Wiley & Sons; 2014 . 

[12] Feder J . Fractals. New York: Plenum Press; 1988 . 
[13] Fernández-Martínez M , Sánchez-Granero MA . Fractal dimension for 

fractal structures: a Hausdorff approach. Topol Appl 2012;159(7):1825–
37 . 

http://dx.doi.org/10.13039/501100004281
http://dx.doi.org/10.13039/501100003329
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0003
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0003
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0003
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0004
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0004
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0004
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0005
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0005
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0005
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0007
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0007
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0007
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0009
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0009
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0010
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0010
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0011
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0011
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0013


M. Fernández-Martínez et al. / Chaos, Solitons and Fractals 89 (2016) 210–223 223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] Fernández-Martínez M , Sánchez-Granero MA . Fractal dimension for
fractal structures. Topol Appl 2014;163:93–111 . 

[15] Fernández-Martínez M , Sánchez-Granero MA . Fractal dimension for
fractal structures: a Hausdorff approach revisited. J Math Anal Appl

2014;409(1):321–30 . 
[16] Fernández-Martínez M , Sánchez-Granero MA . How to calculate the

Hausdorff dimension using fractal structures. Appl Math Comput

2015;264:116–31 . 
[17] Fernández-Martínez M , Sánchez-Granero MA . A new fractal dimension

for curves based on fractal structures. Topol Appl 2015 in press . 
[18] Fernández-Martínez M , Sánchez-Granero MA , Segovia JET . Fractal di-

mension for fractal structures: applications to the domain of words.
Appl Math Comput 2012;219(3):1193–9 . 
[19] Fernández-Martínez M , Sánchez-Granero MA , Segovia JET . Fractal di-
mensions for fractal structures and their applications to financial mar-

kets. Roma: Aracne Editrice S.r.l.; 2013 . 
[20] Hausdorff F . Dimension und äusseres mass. Math Ann 1919;79:157–79 .

[21] Moran PAP . Additive functions of intervals and Hausdorff measure. Proc
Camb Phil Soc 1946;42(1):15–23 . 

[22] Pontrjagin L , Schnirelman L . Sur une proprieté métrique de la dimen-

sion. Ann Math 1932;33(1):156–62 . 
[23] Sánchez-Granero MA . Fractal structures: asymmetric topology and its

applications. In: Quaderni di matematica, 26. Aracne; 2012. p. 211–45 . 

http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0015
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0015
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0015
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0016
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0016
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0016
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0017
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0017
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0017
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0020
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0020
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0021
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0021
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0022
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0022
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0022
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0023
http://refhub.elsevier.com/S0960-0779(15)00342-2/sbref0023

	Counterexamples in theory of fractal dimension for fractal structures
	1 Introduction
	2 Preliminaries
	2.1 Classical models for fractal dimension
	2.2 Fractal structures and the natural fractal structure on any Euclidean subspace
	2.3 Theoretical models for fractal dimension based on fractal structures
	2.4 IFS-attractors. The natural fractal structure on IFS-attractors. The open set condition
	2.5 The classical Moran’s Theorem

	3 Counterexamples regarding theoretical properties for a fractal dimension definition
	4 Some differences between fractal dimensions I and II
	5 Justifying some requirements to several fractal dimension definitions regarding fractal structures
	5.1 Why (F, n) is used for fractal dimension II instead of (n).
	5.2 Why (F, n) must be a 0-convergent decreasing sequence in several Hausdorff type models of fractal dimension for a fractal structure

	6 Counterexamples involving fractal dimensions for IFS-attractors
	7 Counterexamples to highlight that some fractal dimensions do not coincide in general
	 Acknowledgments
	 References


